Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Transportation Research Record ; : 03611981211055665, 2021.
Article in English | Sage | ID: covidwho-1511631

ABSTRACT

During the COVID-19 pandemic, authorities in many places have implemented various countermeasures, including setting up a cordon sanitaire to restrict population movement. This paper proposes a bi-level programming model to deploy a limited number of parallel checkpoints at each entry link around the cordon sanitaire to achieve a minimum total waiting time for all travelers. At the lower level, it is a transportation network equilibrium with queuing for a fixed travel demand and given road network. The feedback process between trip distribution and trip assignment results in the predicted waiting time and traffic flow for each entry link. For the lower-level model, the method of successive averages is used to achieve a network equilibrium with queuing for any given allocation decision from the upper level, and the reduced gradient algorithm is used for traffic assignment with queuing. At the upper level, it is a queuing network optimization model. The objective is the minimization of the system?s total waiting time, which can be derived from the predicted traffic flow and queuing delay time at each entry link from the lower-level model. Since it is a nonlinear integer programming problem that is hard to solve, a genetic algorithm with elite strategy is designed. An experimental study using the Nguyen-Dupuis road network shows that the proposed methods effectively find a good heuristic optimal solution. Together with the findings from two additional sensitivity tests, the proposed methods are beneficial for policymakers to determine the optimal deployment of cordon sanitaire given limited resources.

2.
Journal of Industrial and Management Optimization ; 0(0), 2022.
Article in English | Web of Science | ID: covidwho-2024416

ABSTRACT

The outbreak of COVID-19 and its variants has profoundly disrupted our normal life. Many local authorities enforced cordon sanitaires for the protection of sensitive areas. Travelers can only cross the cordon after being tested. This paper aims to propose a method to determine the optimal deployment of cordon sanitaires in terms of minimum queueing delay time with available health testing resources. A sequential two-stage model is formulated where the first-stage model describes transportation system equilibrium to predict traffic flows. The second-stage model, a nonlinear integer programming, optimizes health resource allocation along the cordon sanitaire. This optimization aims to minimize the system's total delay time among all entry gates. Note that a stochastic queueing model is used to represent the queueing phenomenon at each entry link. A heuristic algorithm is designed to solve the proposed two-stage model where the Method of Successive Averages (MSA) is adopted for the first-stage model, and a genetic algorithm (GA) with elite strategy is adopted for the second-stage model. An experimental study is conducted to demonstrate the effectiveness of the proposed method and algorithm. The results show that these methods can find a good heuristic solution, and it is not cost-effective for authorities to keep adding health resources after reaching a certain limit. These methods are useful for policymakers to determine the optimal deployment of health resources at cordon sanitaires for pandemic control and prevention.

SELECTION OF CITATIONS
SEARCH DETAIL